skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, Shuo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 5, 2026
  2. Verma, Prabhat; Suh, Yung Doug (Ed.)
  3. We developed a new technique that enables deterministic assembly of diamond color centers in a SiN photonic circuit. Using this technique, we observed Purcell enhancement of SiV centers coupled to a silicon nitride ring resonator. 
    more » « less
  4. Abstract Spectral characterization of noise environments that lead to the decoherence of qubits is critical to developing robust quantum technologies. While dynamical decoupling offers one of the most successful approaches to characterize noise spectra, it necessitates applying large sequences ofπpulses that increase the complexity and cost of the method. Here, we introduce a noise spectroscopy method that utilizes only the Fourier transform of free induction decay or spin echo measurements, thus removing the need for the application manyπpulses. We show that our method faithfully recovers the correct noise spectra for a variety of different environments (including 1/f-type noise) and outperforms previous dynamical decoupling schemes while significantly reducing their experimental overhead. We also discuss the experimental feasibility of our proposal and demonstrate its robustness in the presence of statistical measurement error. Our method is applicable to a wide range of quantum platforms and provides a simpler path toward a more accurate spectral characterization of quantum devices, thus offering possibilities for tailored decoherence mitigation. 
    more » « less
  5. We developed a new technique that enables deterministic assembly of diamond color centers in a SiN photonic circuit. Using this technique, we observed Purcell enhancement of SiV centers coupled to a silicon nitride ring resonator. 
    more » « less
  6. By encoding logical qubits into specific types of photonic graph states, one can realize quantum repeaters that enable fast entanglement distribution rates approaching classical communication. However, the generation of these photonic graph states requires a formidable resource overhead using traditional approaches based on linear optics. Overcoming this challenge, a number of new schemes have been proposed that employ quantum emitters to deterministically generate photonic graph states. Although these schemes have the potential to significantly reduce the resource cost, a systematic comparison of the repeater performance among different encodings and different generation schemes is lacking. Here, we quantitatively analyze the performance of quantum repeaters based on two different graph states, i.e. the tree graph states and the repeater graph states. For both states, we compare the performance between two generation schemes, one based on a single quantum emitter coupled to ancillary matter qubits, and one based on a single quantum emitter coupled to a delayed feedback. We identify the numerically optimal scheme at different system parameters. Our analysis provides a clear guideline on the selection of the generation scheme for graph-state-based quantum repeaters, and lays out the parameter requirements for future experimental realizations of different schemes. 
    more » « less
  7. I will discuss our recent proposal on deterministic generation of photonic repeater graph states using only a single quantum emitter, our plans for its experimental implementation, and its applications in quantum repeaters and networks. 
    more » « less