skip to main content


Search for: All records

Creators/Authors contains: "Sun, Shuo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. By encoding logical qubits into specific types of photonic graph states, one can realize quantum repeaters that enable fast entanglement distribution rates approaching classical communication. However, the generation of these photonic graph states requires a formidable resource overhead using traditional approaches based on linear optics. Overcoming this challenge, a number of new schemes have been proposed that employ quantum emitters to deterministically generate photonic graph states. Although these schemes have the potential to significantly reduce the resource cost, a systematic comparison of the repeater performance among different encodings and different generation schemes is lacking. Here, we quantitatively analyze the performance of quantum repeaters based on two different graph states, i.e. the tree graph states and the repeater graph states. For both states, we compare the performance between two generation schemes, one based on a single quantum emitter coupled to ancillary matter qubits, and one based on a single quantum emitter coupled to a delayed feedback. We identify the numerically optimal scheme at different system parameters. Our analysis provides a clear guideline on the selection of the generation scheme for graph-state-based quantum repeaters, and lays out the parameter requirements for future experimental realizations of different schemes. 
    more » « less
  2. I will discuss our recent proposal on deterministic generation of photonic repeater graph states using only a single quantum emitter, our plans for its experimental implementation, and its applications in quantum repeaters and networks.

     
    more » « less
  3. Integrating solid-state quantum emitters with photonic circuits is essential for realizing large-scale quantum photonic processors. Negatively charged tin-vacancy (SnV−) centers in diamond have emerged as promising candidates for quantum emitters because of their excellent optical and spin properties, including narrow-linewidth emission and long spin coherence times. SnV− centers need to be incorporated in optical waveguides for efficient onchip routing of the photons they generate. However, such integration has yet to be realized. In this Letter, we demonstrate the coupling of SnV− centers to a nanophotonic waveguide. We realize this device by leveraging our recently developed shallow ion implantation and growth method for the generation of high-quality SnV− centers and the advanced quasi-isotropic diamond fabrication technique. We confirm the compatibility and robustness of these techniques through successful coupling of narrow-linewidth SnV− centers (as narrow as 36 ± 2 MHz) to the diamond waveguide. Furthermore, we investigate the stability of waveguide-coupled SnV− centers under resonant excitation. Our results are an important step toward SnV−-based on-chip spin-photon interfaces, single-photon nonlinearity, and photon-mediated spin interactions. 
    more » « less